Inversions and Möbius transformations
(This is Glen.) At some point, Ker Yang wrote a post on Reim's theorem, which he used to solve two past year IMO problems. I remember commenting to him that I had solved neither of them with Reim (and no, I did not bash them). Later on, I tried reconstructing my solution to IMO 2017/4, and I noticed something interesting that made me find another (slightly weird) solution that (I think) isn't on AoPS. So that's what I'll be writing about today. First, the problem: ( IMO 2017/4 ) Let $R$ and $S$ be different points on a circle $\Omega$ such that $RS$ is not a diameter. Let $\ell$ be the tangent line to $\Omega$ at $R$. Point $T$ is such that $S$ is the midpoint of the line segment $RT$. Point $J$ is chosen on the shorter arc $RS$ of $\Omega$ so that the circumcircle $\Gamma$ of triangle $JST$ intersects $\ell$ at two distinct points. Let $A$ be the common point of $\Gamma$ and $\ell$ that is closer to $R$. Line $AJ$ meets $\Omega$ again at $K$. Prove that the line $KT$...